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ABSTRACT 
 

The errors generated from current measurement paths are inevitable, and they can be divided into two categories: offset 
error and scaling error. The current data including these errors cause periodic speed ripples which are one and two times 
the stator electrical frequency respectively. Since these undesirable ripples bring about harmful influences to motor driving 
systems, a compensation algorithm must be introduced to the control algorithm of the motor drive. In this paper, a new 
compensation algorithm is proposed. The signal of the integrator output of the d-axis current regulator is chosen and 
processed to compensate for the current measurement errors. Usually the d-axis current command is zero or constant to 
acquire the maximum torque or unity power factor in the ac drive system, and the output of the d-axis current regulator is 
nearly zero or constant as well. If the stator currents include the offset and scaling errors, the respective motor speed 
produces a ripple related to one and two times the stator electrical frequency, and the signal of the integrator output of the 
d-axis current regulator also produces the ripple as the motor speed does. The compensation of the current measurement 
errors is easily implemented to smooth the signal of the integrator output of the d-axis current regulator by subtracting the 
DC offset value or rescaling the gain of the hall sensor. Therefore, the proposed algorithm has several features: the 
robustness in the variation of the mechanical parameters, the application of the steady and transient state, the ease of 
implementation, and less computation time. The MATLAB simulation and experimental results are shown in order to 
verify the validity of the proposed current compensating algorithm. 
 
Keywords: current measurement error, speed ripple, torque ripple, offset error, scaling error 
 
 

1. Introduction 
 

Recently, vector control has become essential in 
operating an ac motor. In the vector control, a precise 
current measurement is very important[1-2]. Stator currents 

are measured through hall sensors, low pass filters and 
A/D converters. Because of the non-linearity of the hall 
sensor, thermal drift of analog elements, and the 
quantization errors of the A/D converters, the errors 
generated from current paths are inevitable even if the 
system shows consistency and a high degree of 
maintenance. 

Fig.1 summarizes the types of errors in the digital ac 
motor drive system[3]. These types of errors will appear as 
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offset and scaling errors in the end.  
When the stator currents include the offset and scaling 

errors, torque pulsation occurs corresponding to one and 
two times of stator electrical frequency respectively. This 
results in the deterioration of the performance of the motor 
drive system. Specifically, this influence must be 
considered for the control of the ultra precision position [4] 
and a compensation method is added in the control 
algorithm of the motor drive. 

When the stator currents include the offset and scaling 
errors, torque pulsation occurs corresponding to one and 
two times of stator electrical frequency respectively. This 
results in the deterioration of the performance of the motor 
drive system. Especially, influence of those must be 
considered for the control of the ultra precision position [4] 
and a compensation method is to be added in the control 
algorithm of the motor drive. 

The recent studies have reported that the undesirable 
periodic ripple element was related by the error in current 
measurement. One in [5] and [6] utilizes the inverse 
system model to calculate the torque ripple. So this 
method may become unstable with inexact mechanical 
parameters. Another in [7] and [8] requires a torque sensor, 
and this may be unacceptable in many application fields. 
The other in [9] is robust in the variations of the 
mechanical parameters and can be applied to wide speed 
ranges. It is, however, difficult to implement this 
compensation algorithm in real systems. All methods 
mentioned above can only be applied to the steady state 
operation. 

In this paper a new compensation method is proposed. 
The main contribution of this paper introduces the signal 
of the integrator output of the d-axis current regulator to 
compensate for the errors of the current measurement. 
Usually the d-axis current command is zero or constant to 
acquire the maximum torque or unity power factor in the 

ac drive system, and the output of the d-axis current 
regulator is nearly zero or constant as well. If the stator 
currents include the offset and scaling errors, the motor 
speed has the ripple related to one and two times of the 
stator electrical frequency respectively, and the signal of 
the integrator output of the d-axis current regulator also 
has the ripple as the motor speed does. The compensation 
of the current measurement errors is easily implemented to 
smooth the signal of the integrator output of the d-axis 
current regulator by subtracting the DC offset value or 
rescaling the gain of the hall sensor. 

 

2. The Effect of Current Measurement Error 
 

2.1 Effect of offset error  
The offset error, which may be caused by a potential 

imbalance of a sensor device, measurement path, or some 
other unforeseen factor is inevitable. It is common that the 
offset current is calculated by reading A/D converter 
repeatedly without current flowing. But the effects of the 
thermal drift of analog devices and the switching noise in 
the actual running condition are not considered in this case.  

The error of offset can be expressed in an actual 3 phase 
system by (1). 
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Since the summation of the three phases current values 
should be zero in case there is no neutral point 
inter-connection, it is sufficient to measure only two phase 
currents for the vector control. From (1) the measured 
synchronous d-q axis currents can be calculated as 
follows: 
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e
dsI∆  and e

qsI∆ contain the ripple corresponding to the 

undamental value of the stator electrical frequency.  
 
2.2 Effect of Scaling error 
The scaling error may be caused by non-linearity of the 

current sensor itself, the matching circuit between the 
current sensor and A/D input, the quantization errors 
and non-linearity of an A/D converter [10].  

Usually the d-axis current command is zero or constant 
to obtain maximum torque in a constant torque region. If 
the stator currents contain the scaling error, the stator 
currents can be expressed as (5). Where aK and 

bK denote the scale factor of a, b phase current 

respectively. The minus sign merely reflects the reference 
angle of a-b phases.  
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From (5) the measured synchronous d-q axis currents 
can be acquired as follows:  
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As known from e
scale_dsI∆ and e

scale_qsI∆ , d-q axis 

currents contain the ripple corresponding to two times 
( ef2 ) of the stator electrical frequency. 

 
3. The Compensation Method for Current 

Measurement Error  
 
3.1 Analyzing the signal of the integrator output 

of the d-axis current regulator  
If the stator currents include the offset and scaling 

errors, the signal of the integrator output of the d-axis 
current regulator also has the ripple related to one and two 

times of the stator electrical frequency respectively as 
mentioned above. This signal can be derived by 
integrating the sum of (3) and (6) as follows in (8):  
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As known from (3) and (6), (8) contains the ripple 

corresponding to one, two and six times of the stator 
electrical frequency respectively. Six times frequency 
ripple reflects the effect of the dead time of the switching 
device[11-14]. In order to remove or ignore the dead time 
effect, it is necessary to average (8) between the interval 
[0 2π] as shown in Fig. 2. To get the average value, 
splitting the interval [0 2π] into 6 parts as shown in Fig.2, 
and integrating 6 parts result in the elimination of the dead 
time effect by averaging 6 parts respectively. 

 
3.2 Proposed Compensation Method 

3.2.1 Offset errors Compensation 
Fig. 2 shows the results of two cases. One case is 

dividing (8) into two segments (secA and secB) and 
integrating as known in Fig. 2(a). And the result of 
calculation of secA and secB is shown in (9) and (10) 
respectively. 
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The difference ( 1ε ) reflects the existence of a-phase 

offset error ( asI∆ ), and is (11) as follows: 
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This error ( 1ε ) is easily removed or compensated by 

equalizing the integral values between two segments. The 
other case is dividing (8) into six segments (secⅠ~ secⅥ) 
and integrating as shown in Fig. 2(b) and (c). 

Nevertheless the signal of the integral output of d-axis 
current regulator has the offset error, secⅠ, secⅢ, sec Ⅳ 
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and secⅥ have the different values as shown in Fig. 2(b), 
and (12). 
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The summation ( 2ε ) between aε and bε explains the 

existence of b-phase offset error ( bsI∆ ) as shown in Fig.2 

(b), and (13). 
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Fig. 2  Each error( 321 εεε ,, )of current analyzed for compensation 

 
If offset errors ( 1ε and 2ε ) are completely compensated 

or removed, each segment shows values as (14) 
respectively. (14) is always satisfied although scaling 
errors are in the signal of the integrator output of the 
d-axis current regulator. 
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Fig. 3  Main block diagram of the proposed compensation scheme. 
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3.2.2 Scaling Errors Compensation. 

If the scaling factors ( aK and bK ) of a- and b-phase have 
the same value, (6) and (7) are zero and not observed. In this 
case the compensation of the scaling effect is completed. (15), 
(16) and (17) reflect the existence of scaling errors. 
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The summation ( 3ε ) between xε and yε explains the 

existence of scaling errors between a- and b-phase as 
shown in Fig.2 (c), and (18). 
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Scaling error ( 3ε ) is easily removed or compensated by 

making 3ε  null or zero. Both scaling factors have 

approximate unity ( 1≅aK , and 1≅bK ), compensation is 

carried out about two phases simultaneously until 03 =ε . 

 
3.2.3 Implementation of the Proposed 

Compensation Algorithm 
Fig.3 shows the main conceptual block diagram of the 

proposed compensation method. The signal of the integrator 
output of d-axis current regulator is used to the input of the 
proposed compensation algorithm. This algorithm consists of 
offset and scaling parts. The integral outputs of the offset part 
are (11) and (13). These terms are the input of the I-type 

(Integral-type) controller( S/Koffset ). The two I-type 

controllers of the offset part force 1ε  and 2ε  to be zero. 

The integral outputs of the scaling part are (18). This term is 
the input of the I-type controller ( S/Kscale ). Also the I-type 

of the scaling part forces 3ε to be zero. The I-type controller 

includes a function of the memory which stores 
compensation value at this point. The compensation of offset 
and scaling errors is achieved automatically in the proposed 
compensation algorithm and the compensation direction 
corresponds to table 1. The compensating gains ( offsetK and 

scaleK ) of the offset and scaling errors can be chosen between 

0 and 1. The smaller gain, the slower response, but more 
accurate compensation current can be achieved. In this paper, 

10.Koffset =  and 050.Kscale =  are chosen for stable 

operation. The compensation gains of offset and scaling 
errors are obtained by multiplying eω  by offsetK and scaleK , 

and the same accuracy of the compensation is guaranteed 
according to the rotor speed. The compensating action is 
finally achieved by (19) from output (Offset-a, Offset-b, 
Scale-a, Scale-b ) of the I-type controller.  

 

os
os

bffsetbcalesensbsbs

affsetacalesensasas

II
II

−−−

−−−

−×=

−×=
                 (19) 

 
The compensation direction of the proposed algorithm 

is summarized in Table 1. 
. 
Table 1  Compensation directions to adjust the offset and 

scaling errors 

Value 
Error of  

Integral Value 
Error of measured 

Current 
Direction of 

Compensation

01 >ε  0<asI∆  (＋) 
Offset-a 

01 <ε  0>asI∆  (－) 

02 >ε  0<bsI∆  (＋) 
Offset-b

02 <ε  0>bsI∆  (－) 

03 >ε  ba KK <  (＋) 
Scale-a 

03 <ε  ba KK >  (－) 

03 >ε  ba KK <  (－) 
Scale-b 

03 <ε  ba KK >  (＋) 
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4. Simulation 
 

The simulation of the proposed algorithm was 
performed by using MATLAB Simulink[15]. To verify the 
feasibility and effectiveness of the proposed compensation 
algorithm, the current errors of offset and scaling are 
given, [ ]A.Ias 050=∆ , [ ]A.Ibs 020=∆ , 11.Ka = and 

90.Kb =  respectively in this simulation. Fig.4 is 

simulation block in order to verify the validity of the 

proposed compensating algorithm. In the upper parts are 
the speed controller for a motor, a current controller and a 
modeled motor. In the lower parts are the path of current 
measurement and compensator for the verification of 
algorithm. Fig. 2 shows simulation block of the proposed 
compensation scheme. 

Fig. 5 shows the simulation waveforms of the integrator 
output of the d-axis current regulator, and the starting time 
of the compensation is at 0.5[sec]. The compensation 
operation of offset and scaling are carrying out at the same 
time as shown in Fig. 5(a). And Fig. 5(b) is a larger scale 
of Fig. 5(a). These waveforms show that the proposed 
algorithm operates well under these conditions. 

 
5. Experimental Results 

 

Fig. 6 shows the AC motor drive system used in the 
experiment. In this experiment, 50,000pps encoder is used 
for the precise speed measurement. 

The experimental result is obtained under the each error 
condition of [ ]A.Ias 050=∆ , [ ]A.Ibs 020=∆ , 21.Ka =  and 

80.Kb = . Fig. 7 shows the steady state characteristics of 

the motor speed and the integral values of 6 segments 
before the compensation. The maximum speed ripple is 
about 0.5[rpm] and there exists an undesirable ef1  and 

ef2  of the speed ripples as shown in FFT analysis. 

Fig. 8 shows the process of the compensation of current 
measurement errors. The ripple of Fig.8(c) is diminished by 
a method that looks for the compensating value in process. 
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Fig. 6  Configuration of power circuit and drive system 
 

 

 
 
 

Fig. 4  Simulation block of the proposed compensation scheme
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Fig. 5  Simulation results 
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Fig. 7  Steady-state characteristics without compensation scheme 
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Fig. 8  Characteristics of compensating operation after flag-on 

 
Fig. 9 shows the enlargement waveforms of Fig. 8 

between 30[sec] and 80[sec]. After starting flag of 
compensation begins, the compensating algorithm 
operates well, and the steady state offset error is very 
small as shown in Fig. 9. But there is scaling error yet in 
Fig. 9. 

After the compensation by the proposed method, speed 
ripples are eliminated almost completely to below 
0.05[rpm] as shown in Fig. 10. ef6  shows the influence 

of the dead time in Fig.10. The effect will not be 
mentioned in this paper. Several algorithms of the dead 
time have been published as mentioned before section. 

Fig. 11 shows dynamic characteristics of current errors 
compensation in the transient state. In this experimental 
result, the proposed compensation algorithm has the 
attractive feature of transient state operation. 
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Fig. 9  Characteristics of compensating operation after flag-on 

(Enlargement waveforms of Fig.8 between 30[sec] and 80[sec]) 
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Fig. 10  Steady-state characteristics with proposed compensation 
scheme 
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Fig. 11  Dynamic characteristics of compensation in the transient 
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6. Conclusion 
 

In the digital AC motor drive system, the torque pulsation 
is caused by the offset and scaling error of the stator 
currents. Thus without the proper compensation algorithm, 
a higher performance vector control cannot be 
accomplished.  

In this paper the new compensation algorithm was 
proposed. The main contribution of this paper introduces 
the signal of the integrator output of the d-axis current 
regulator to compensate the current errors. Usually the 
d-axis current command is zero or constant to acquire the 
maximum torque or unity power factor in the ac drive 
system, and the output of the d-axis current regulator is 
nearly zero or constant as well. Therefore, the proposed 
algorithm shows several features of the robustness in the 
variation of the machine variables, the application of the 
steady and transient state, the easy implementation, and 
requiring less computation time.  

Through the simulation and experimentation, the 
feasibility and effectiveness of the proposed algorithm was 
verified. 
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